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Abstract—Transferable adversarial examples (AEs) are visu-
ally indistinguishable from benign images, but can successfully
mislead unknown deep neural networks. However, existing AEs
normally vary considerably from benign images in the feature
space, making them hard to pass label checking and adversarial
detection. Therefore, how to make AEs camouflaged, disguising
as benign images during detection is still an open problem. In this
paper, we propose a novel camouflaged adversarial attack (CAA),
which produces camouflaged adversarial examples (CAEs) for
the first time. Our main idea is to make CAEs’ adversarial
properties keep “dormant” state until the target model inadver-
tently triggers the “activated” state. To this end, we craft attack
and camouflage perturbations, so that CAEs are visually and
feature/label-wise indistinguishable from benign images at first,
but will implicitly turn into AEs once being triggered. Specifically,
we exploit two common preprocessing operations, image scaling
and JPEG compression, as the trigger, and propose a two-
stage optimization strategy. As the preprocessing details of target
models are unknown, the first stage trains a well-designed gen-
erative adversarial network under varying scaling/compression
parameters to enhance the robustness of attack perturbations.
The second stage uses feature (dis)similarities and contrastive
distances to improve the transferability of camouflage perturba-
tions. Extensive experiments on ImageNet dataset validate the
effectiveness of CAA. Especially for robust models, the average
fooling rate after preprocessing could reach 96.3% outperforming
the state-of-the-art adversarial attack by 13.5%.

Index Terms—Deep neural networks, adversarial attack, cam-
ouflaged adversarial example, transferability, imperceptibility.

I. INTRODUCTION

DEEP neural networks (DNNs) are highly vulnerable to
adversarial examples (AEs) [1], which can mislead mod-

els by adding imperceptible perturbations on benign images. In
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Fig. 1. (a) Changes of spectral energy maps and pixel differences after
scaling/JPEG compression. In spectral energy maps, the top-left region cor-
responds to low frequency, while the bottom-right represents high frequency,
with brighter areas indicating stronger spectral energy. For better visual effect,
pixel differences are amplified by 20 times. (b) Increased attack success rates
(%) when confining MI-FGSM perturbations to low-frequency component.

particular, AEs are cross-model transferable, posing security
threats to real-world applications, e.g., face recognition [2],
autonomous driving [3], or conversely enabling privacy-
preserving inference [4]. An effective defense against AEs is
to deploy adversarial detectors like feature squeezing [5] at
the front end to filter out abnormal samples before feeding
models. Due to the adversarial properties, AEs normally show
large differences from benign images in the feature space,
and can be easily caught by label checking or adversarial
detection [6]. Only after passing detection can AEs carry
out attacks, and thus enabling AEs to conceal adversarial
properties and disguise as benign images during detection is
crucial to the accomplishment of attacks. However, existing
work focuses only on imperceptibility or transferability, and
how to make AEs camouflaged is still an open problem.

In this paper, we propose a novel camouflaged adversar-
ial attack (CAA), which produces camouflaged adversarial
examples (CAEs) for the first time. At a high-level view,
the adversarial properties of CAEs will keep “dormant” state
until target models inadvertently trigger the “activated” state.
To make the activation event difficult to detect, we exploit
two common preprocessing operations, image scaling and
JPEG compression, as the trigger, which have been integrated
into mainstream deep learning frameworks such as Caffe,
TensorFlow and PyTorch [7]. Our design goal is to make
CAEs visually and feature/label-wise indistinguishable from
benign images at first, but turn into AEs after preprocessing. To
achieve this, our initial idea is applying spectrum transforma-
tion [8] on input images to craft low-frequency attack perturba-
tions and high-frequency camouflage perturbations, misleading
target models and deceiving detection models, respectively.
The inspiration comes from two key observations: 1⃝ As shown
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Fig. 2. The innovation of our work. (a) The main difference from existing attacks. In adversarial attack, AE is visually indistinguishable from benign image
and can mislead target model, but lacks camouflage. In scaling attack, CI is visually similar to benign image and has camouflage property, but will become
a different target image after scaling. In our CAA, CAE is visually indistinguishable from benign image and has camouflage property, which will turn into
AE after scaling/compression. (b) The major advantage compared to existing attacks. When three kinds of defenses are deployed at the front end, only CAE
can pass detection and reach the back-end target vision system, which performs routine preprocessing operations to trigger adversarial attack.

in Fig. 1-(a), both scaling and JPEG compression tend to drop
high-frequency information; 2⃝ As shown in Fig. 1-(b), low-
frequency perturbations yield high transferability, especially
for adversarially trained models. The above observations are
also experimentally proven in Refs. [8], [9]. We expect that
the high-frequency camouflage perturbations play a leading
role at first, but after preprocessing, they are filtered out and
the low-frequency attack perturbations begin to take effect.

However, merely manipulating frequency-domain perturba-
tions leads to unsatisfactory performances in practice. The
main reason is that the exact scaling/compression algorithms
and relative parameters adopted by target models are unknown.
Thus, it is impossible to determine what information will be
filtered out after preprocessing. The unfiltered residual high-
frequency camouflage perturbations may impair adversarial
properties, causing low fooling rates. Besides, high-frequency
perturbations normally lack transferability, making the camou-
flage perturbations hard to deceive unseen detection models.
Therefore, the main challenge lies in how to improve attack
robustness as well as camouflage transferability at once.

To address this challenge, we formalize the design objective
as a bi-level optimization problem, and solve it by a two-stage
optimization strategy. In the first stage, we design a novel
generative adversarial network (GAN) that is integrated with
high-frequency robustness (HFR) and preprocessing modules,
while training the GAN under varying scaling/compression
parameters to learn robust attack perturbations. In the second
stage, we design the feature-level losses and triplet loss [10],
utilizing feature (dis)similarities and contrastive distances to
improve the transferability of camouflage perturbations. It
is worth noting that our design is inspired by the scaling
attack [11], in which the camouflage image (CI) crafted by
injecting a target image into the benign image can mislead
DNNs after scaling. But the CI will show a totally different
appearance after scaling, and such dramatic dissimilarity can
be easily detected by human eyes. The innovation of our work
is illustrated in Fig. 2. From this figure, we can see that while
both AE and CAE are visually indistinguishable from benign

image, only CAE can disguise as benign before preprocessing
so as to pass label checking and adversarial detection; While
both CI and CAE have camouflage properties, CI visually
retains the trace of the target image, and can be easily detected
by decamouflage methods [12] (as shown in Fig. 11).

Our contributions are summarized as follows.
• We find that current AEs lack camouflage, making them

hard to pass label checking or adversarial detection.
To address this limitation, we propose a novel CAA
attack which hides CAEs’ adversarial properties behind
preprocessing, simultaneously achieving camouflage, im-
perceptibility, and transferability for the first time.

• We design a two-stage optimization strategy to craft
attack and camouflage perturbations, making CAEs visu-
ally and feature/label-wise indistinguishable from benign
images at first, but implicitly turn into AEs after triggered.

• Empirical evaluations on ImageNet dataset validate the
effectiveness. Especially for robust models, the average
camouflage success rate (CSR) before preprocessing ex-
ceeds 84%, while the average attack success rate (ASR)
after preprocessing could reach 96.3%, surpassing the
state-of-the-art (SOTA) adversarial attack by 13.5%.

Paper Organization. We review the related work in Section II
before introducing the preliminaries in Section III. After de-
scribing the threat model in Section IV, we detail the proposed
CAA in Section V and provide the performance evaluation in
Section VI. Finally, we present a discussion in Section VII
before concluding this paper in Section VIII.

II. RELATED WORK

A. Transferable Adversarial Attacks

TAI [13] provided a systematized review of transferable
attacks, and suggested the respective optimal hyperparameter
settings for fair comparison. To improve transferability, exist-
ing researches can be classified into the following categories.

Input Transformation. This kind of approaches modify
input images before gradient calculation, showing superior
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performance. To enhance input diversity, DIM [14] resized the
image into random sizes, TIM [15] translated the image into
a set of images, SIM [16] calculated the gradient of several
scaled images, and BSR [17] split the image into blocks, which
were then randomly shuffled and rotated.

Feature Manipulation. Observing that different models
yield similar shallow feature representations, this type of ap-
proaches launch attacks at models’ intermediate layers, aiming
to maximize the distance between the low-level features of
benign and adversarial examples. ATA [18] computed model
attention over extracted features to regularize the search of
additive noises. BIA [19] trained a GAN to disrupt low-level
features of input images to enhance transferability. ILPD [20]
introduced the intermediate-level perturbation decay to obtain
effective adversarial directions. Attention-SA [21] proposed
to manipulate latent semantic representations for enhanced
adversarial attacks. FAUG [22] proposed injecting dynamic
random noise into intermediate features to reduce surrogate-
model overfitting.

Frequency Manipulation. For an image, the low-frequency
components generally contain the semantic information,
whereas the high-frequency components are almost impercep-
tible to humans. Observing that low-frequency perturbations
yield high transferability, recent studies began to inject per-
turbations into the low-frequency components [8]. Besides,
several studies showed that adversarial perturbations were not
necessarily confined to high- or low-frequency regions [23].
Based on this, MFI [24] replaced high-frequency components
to improve adversarial transferability. SSA [25] proposed the
frequency-domain model augmentation by using spectrum
transformation; GE-AdvGAN [26] edited gradients based on
frequency domain during the generator training to improve ad-
versarial transferability; HFA [27] enhanced the transferability
by scaling gradients and combining high-frequency features.

Apart from the above approaches, adversarial transferability
can be enhanced by improving loss functions [28], [29],
involving momentum into gradient calculation [30], attacking
multiple source models simultaneously [31], and modifying
source models [32]. Besides, UMI-GRAT [33] focused on
transferable attacks against segmentation models. Their work
considers a different threat model, wherein the attacker is
unaware of the downstream model’s tasks and the associated
training data. UCG [34] proposed a universal generator that
improved adversarial transferability across both architectures
and domains by incorporating attention transfer, roughness
abatement, and integrated transformation techniques. However,
all existing transferable AEs lack camouflage.

B. Imperceptible Attacks

Imperceptible attacks focus on improving adversarial invis-
ibility to deceive human vision system. Initial work improved
imperceptibility by manipulating high-frequency components.
For instance, AdvDrop [35] generated AEs by removing
high-frequency information from benign images; SSAH [36]
used a low-frequency constraint to limit perturbations within
the imperceptible high-frequency components. As the high-
frequency components normally lack transferability, later work

employs generative models to improve the naturalness of AEs.
AdvAD [37] modeled adversarial attacks as a non-parametric
diffusion process by using target model guidance and pixel-
level constraint; DiffAttack [38] optimized adversarial pertur-
bations in the latent space of diffusion models. The AEs of
imperceptible attacks are more visually deceptive, but vary
considerably from benign images in the feature space, thus
still cannot pass label checking and adversarial detection.

C. Camouflaged and Conditional Adversarial Patches

While some previous work [39], [40] claimed to achieve
adversarial camouflage, their approaches primarily focused on
crafting adversarial patches with natural styles that appear
legitimate to human observers, rather than evading label-based
checking or adversarial detection. The only work that seems
somewhat similar to ours is that on conditional adversarial
patches [41], which remain benign under normal circum-
stances but can be triggered to launch an attack by injecting
acoustic signals towards cameras. However, their approach
focused on adversarial patches, requiring the attacker to ac-
tively inject specific signals to launch physical-world attacks.
In summary, our CAA differs from conditional adversarial
patches in the following aspects: 1⃝ Trigger Mechanism: Con-
ditional adversarial patches rely on specific external triggers
(e.g., lighting or acoustic signals), whereas our CAA leverages
common image preprocessing as natural triggers, which can
be inadvertently triggered by target models without noticing.
2⃝ Perturbation Form: Conditional adversarial patches are
typically visible to human eyes, in contrast, CAA generates
imperceptible perturbations under the 𝑙𝑝-norm constraint.

D. Adversarial Defenses

To mitigate the threat posed by adversarial examples, a
wide range of defense techniques [42] have been proposed.
Adversarial training has been extensively studied as a robust
defense strategy, where models are trained using both clean
and adversarially perturbed inputs. TRADES [43] enhanced
this approach by introducing a regularization term to balance
standard accuracy and robustness. TATA [44] trained models
with trigger activation, so that models generated accurate pre-
dictions only when triggered data was taken as input. To im-
prove black-box resilience, ensemble adversarial training [45]
decoupled the generation of adversarial examples from the
target model itself. In contrast to model-centered defenses,
input transformation [46] techniques focus on mitigating ad-
versarial perturbations through preprocessing before inference.
FD [47] suppressed high-frequency adversarial noise using
JPEG-based frequency compression. Randomized resizing and
padding (R&P) [48] applied geometric transformations to
disrupt structured perturbations. HGD [49] utilized a U-Net
decoder to recover clean semantic features, while NRP [50]
leveraged self-supervised learning to purify corrupted repre-
sentations. More recently, DiffPure [51] used diffusion models
for purification, demonstrating strong defensive performance.
Beyond empirical defenses, certified methods provided formal
guarantees of robustness against bounded perturbations. Rep-
resentative examples include randomized smoothing (RS) [52],
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interval bound propagation (IBP) [53]. In this paper, we
adopt the advanced defenses to assess the robustness of our
adversarial examples.

III. PRELIMINARIES

A. Adversarial Attacks

Adversarial attacks, a critical research area in machine
learning security, aim to deceive DNN models through care-
fully crafted imperceptible perturbations. Formally, given a
DNN classifier 𝑓 : X → Y , an input sample 𝑥 ∈ X, and
its true label 𝑦 ∈ Y, the goal of an adversarial attack is to
generate an adversarial example 𝑥′ = 𝑥 + 𝛿 such that:

𝑓 (𝑥′) ≠ 𝑦, 𝑠.𝑡.∥𝛿∥ 𝑝 ≤ 𝜖, (1)

where 𝛿 denotes the adversarial perturbation, and 𝜖 represents
the perturbation budget under 𝑙𝑝-norm constraints. Based on
the attacker’s knowledge of the target model, adversarial
attacks are categorized into white-box and black-box attacks.

B. Generative Adversarial Networks (GANs)

GANs [54] are a class of deep learning models that consist
of two neural networks: a generator G and a discriminator D,
which are trained simultaneously in a game-theoretic frame-
work. The generator creates fake data, while the discriminator
distinguishes between real and fake samples. The objective
function of a GAN can be formulated as a minimax game
between the generator and the discriminator:

min
G

max
D
E𝑥∼𝑝data (𝑥 ) [logD(𝑥)] + E𝑧∼𝑝𝑧 (𝑧) [log(1 − D(G(𝑧)))],

(2)
where G(𝑧) is the generator output for a noise vector 𝑧, D(𝑥)
is the discriminator’s probability that input 𝑥 is a real sample,
and 𝑝data and 𝑝𝑧 (𝑧) represent the data and noise distributions,
respectively. The generator aims to produce realistic data, and
the discriminator tries to classify data as real or fake.

C. Contrastive Learning

Contrastive learning [55] is a technique where a model
learns to distinguish between similar and dissimilar pairs of
samples. The objective is to bring similar samples closer in
the feature space and push dissimilar samples apart. Triplet
loss [10] is a key loss function used in contrastive learning.
The loss aims to preserve the relative distances between
instances in the learned embedding space. Triplets are formed
from an anchor, a positive sample (similar to the anchor), and
a negative sample (dissimilar to the anchor). The goal is to
ensure the distance between the anchor and positive is smaller
than that between the anchor and negative by a specified
margin. Given an anchor 𝐴, a positive 𝑃, and a negative 𝑁 ,
the triplet loss function can be expressed as:

L𝑡𝑟𝑖 𝑝𝑙𝑒𝑡 = max(𝑑 (𝐴, 𝑃) − 𝑑 (𝐴, 𝑁) + 𝛼, 0), (3)

where 𝑑 (𝐴, 𝑃) is the distance between the anchor and positive,
𝑑 (𝐴, 𝑁) is the distance between the anchor and negative, and
𝛼 is a margin enforced between positive and negative pairs.

Fig. 3. The unique two-period attack flow of CAA.

IV. THREAT MODEL

Victim and Adversary. In this work, we consider a stronger
victim model, which is equipped with defense tools, such as
label consistency checking or adversarial detection, and thus
can filter out potentially malicious inputs before inference.
Accordingly, the adversary setting is more challenging and
constrained, where the generated CAEs can evade detection
mechanisms at first and fool target models after triggered.

Adversarial Knowledge. Our CAA belongs to the transfer-
able black-box attack, where the attacker is assumed to have no
prior knowledge about the target model. Instead, the attacker
leverages a surrogate model to craft adversarial examples that
transfer to the target model. Besides, the attacker is unaware
of the detection mechanisms adopted by the victim. The
precise preprocessing details, including the exact algorithms
and relative parameters, remain unknown to the attacker.

Attack Goal. Let 𝑓𝑡 : X → Y be a target model, let
𝑓𝑠 : X→ Y be a source model, and let 𝑓𝑑 : X→ Y be a label
detection model. Given a benign image 𝑥 ∈ X with ground-
truth label 𝑦 ∈ Y, and source model 𝑓𝑠 , our goal is to craft the
CAE 𝑥𝑐𝑎𝑒 with the following properties: 1⃝ Camouflage: It re-
sembles benign image in the feature space, which can not only
pass adversarial detection, but also deceive the label detection
model, i.e., 𝑓𝑑 (𝑥𝑐𝑎𝑒) = 𝑦; 2⃝ Transferability: It fools the
target model after preprocessing, i.e., 𝑓𝑡 (P(𝑥𝑐𝑎𝑒)) ≠ 𝑦, where
P(·) is the preprocessing function, including scaling and
compression. 3⃝ Imperceptibility: The added perturbations
are small enough so that the CAE is visually similar to the
benign image before and after preprocessing.

Practical Attack Scenarios. The attacker first creates CAEs
of large sizes (e.g., 448×448) and high resolutions (e.g., 3MB),
and then performs two types of attacks: 1⃝ Direct Attack:
The attacker directly sends the CAEs to target models; 2⃝
Indirect Attack: The attacker spreads the CAEs to the Internet
making more models affected indirectly. For example, he can
inject the CAEs into open-source datasets to poison the models
using public training sets. To reduce security risks, victims
will employ a detector to inspect and filter abnormal samples
before using samples coming from outside.

As shown in Fig. 3, our CAA consists of a “latent” period
and an “attack” period. In the latent period, the CAEs disguise
as benign images and can pass the detection. Once scaling or
JPEG compression is executed, CAA enters the attack period
and CAEs become AEs, misleading target models or achieving
data poisoning. The unique two-period attack flow creates
the possibility of evading detection. If the attacker locally
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Fig. 4. The overview of CAA. The first stage takes the benign image 𝑥 as input to learn the attack perturbations 𝛿∗, and the second stage takes the benign
image 𝑥 and the RAE 𝑥𝑟𝑎𝑒 as input to craft the camouflage perturbation 𝛿, outputting the CAE 𝑥𝑐𝑎𝑒 = 𝑥𝑟𝑎𝑒 + 𝛿. All perturbations are clipped.

performs preprocessing, skipping latent period, CAA achieves
the same effect as traditional adversarial attacks.

Choice of Triggers. Modern vision systems almost univer-
sally perform input preprocessing before inference. As summa-
rized in Table XIII of the Appendix, mainstream deep learning
frameworks usually carry out scaling, JPEG compression,
padding, normalization, cropping, color jitter, and filtering.
Among various preprocess operations, CAA chooses scaling
and JPEG compression as the trigger because of the following
reasons: 1⃝ High probability of occurrence. As shown in
Table XIV of the Appendix, DNN models require fixed input
sizes (e.g., 224 × 224), thus scaling becomes a necessary
operation in deep learning pipeline. And JPEG compression is
universally used for digital image transmission and storage. In
addition, prior work has validated the feasibility of employing
scaling and JPEG as the trigger to launch stealthy attacks.
For example, Ref. [11] proposed camouflage attacks on image
scaling algorithms, while Ref. [56] utilized JPEG as the trigger
to launch conditional backdoor attacks. 2⃝ Combined effect. As
shown in Fig. 1-(a), both scaling and JPEG compression tend
to drop high-frequency information, and thus can supplement
each other. Fig. 13 shows that our CAA yields the best
performance when triggering them together. Notably, CAA
does not rely on specific scaling/compression algorithms or
parameters (Fig. 8-Fig. 10), and can successfully attack real-
world cloud-based vision models, where the preprocessing
details are hidden (Table VI).

V. METHODOLOGY

A. Overview

To achieve our attack goal, we plan to craft attack perturba-
tion 𝛿∗ fooling target model 𝑓𝑡 , and camouflage perturbation
𝛿 deceiving detection model 𝑓𝑑 , such that 𝛿 suppresses 𝛿∗ at
first, but 𝛿∗ plays a leading role after preprocessing. Actually,
we adopted a single-stage optimization to craft perturbations at
the beginning. However, from the experiment results shown in
Table XVI of the Appendix, neither of GAN-based training nor
iterative optimization can achieve satisfactory performance by

using one-stage optimization strategy. Therefore, we formalize
the objective as a bi-level optimization problem.

min
𝛿

L
(
𝑓𝑑 (𝑥 + 𝛿∗ + 𝛿), 𝑦

)
𝑠.𝑡. 𝛿∗ = arg max

𝛿∗
L
(
𝑓𝑡 (P(𝑥 + 𝛿∗ + 𝛿)), 𝑦

)
,

∥𝛿∗ + 𝛿∥ 𝑝 ≤ 𝜖,

(4)

where the total perturbations are within 𝜖 under 𝑙𝑝-norm, and
function L is used to determine the distance between the
output of target model 𝑓𝑡 (·) (or the output of detection model
𝑓𝑑 (·)) and the ground-truth label 𝑦.

As shown in Fig. 4, we solve this problem by two stages:
1⃝ High-Frequency Robust Generative Learning. This

stage trains a GAN under varying scaling/compression pa-
rameters to learn robust attack perturbation 𝛿∗. The GAN
consists of a HFR module, a preprocessing function, a gener-
ator 𝐺 𝜃 , and a pre-trained source model 𝑓𝑠 . Specifically, the
HFR module is used to extract the high-frequency component
𝑥ℎ from a benign image 𝑥, 𝑓𝑠 is considered as the frozen
discriminator, and 𝐺 𝜃 guided by loss L𝑎𝑑𝑣 aims to fool
𝑓𝑠 with the preprocessed robust adversarial example (RAE),
P(𝑥𝑟𝑎𝑒) = P(𝑥+𝑥ℎ+𝛿∗). Once trained, 𝐺 𝜃 can craft the attack
perturbations robust against high-frequency information.

2⃝ Feature-Level Camouflage. This stage iteratively
generates camouflage perturbation 𝛿, where a random com-
pression ratio and a random scale factor is adopted in the
preprocessing module. Given a benign image 𝑥, we first invoke
the generator 𝐺 𝜃 and the HFR module to produce the RAE
𝑥𝑟𝑎𝑒 = 𝑥+𝑥ℎ+𝐺 𝜃 (𝑥). Then, we launch feature-level attacks on
the source model 𝑓𝑠 , and design the benign feature similarity
loss L𝑏 𝑓 , the adversarial feature distance loss L𝑎 𝑓 , and the
triplet loss L𝑡𝑟 to learn camouflage perturbation 𝛿. The CAE
is generated by adding 𝛿 into 𝑥𝑟𝑎𝑒, i.e., 𝑥𝑐𝑎𝑒 = 𝑥𝑟𝑎𝑒 + 𝛿.

To show the effectiveness of CAA, we employ class activa-
tion mapping (CAM) [57] to visualize the important features
of benign image and the CAE before and after preprocessing.
From the second row of Fig. 5, we can observe that the
attention heatmap of CAE is largely consistent with that of
benign image. But after preprocessing, the attention heatmap
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Fig. 5. The heatmaps and feature maps of the benign image, the CAE, and
the preprocessed CAE generated on ResNet50 model.

of CAE is significantly disrupted making the model focus on
entirely different areas compared with the benign images. This
indicates that once the high-frequency camouflage perturba-
tions are removed by preprocessing, the low-frequency attack
perturbations start to take effect. Besides, from the third row
of Fig. 5 and Fig. 19 of the Appendix, we can see that the
feature maps of benign images and CAEs, though not identical,
both preserve clear object contours and consistent semantic
structures. Compared to benign feature maps, the feature maps
of CAEs show sharper high-frequency texture details; but the
feature maps of preprocessed CAEs become more blurred and
structurally inconsistent. This is because high-frequency cam-
ouflage perturbations mainly impact texture details, but low-
frequency attack perturbations destroy semantic structures.

B. High-Frequency Robust Generative Learning

Given a benign image 𝑥 with ground-truth label 𝑦, our
initial idea is to let the generator 𝐺 𝜃 fool the source model
𝑓𝑠 with P(𝑥 + 𝐺 𝜃 (𝑥)). Our empirical studies show that
current attack perturbations lack robustness, which are easily
suppressed by the high-frequency information survived after
image preprocessing. Thus, we incorporate the HFR module
into the GAN, employing an approximate yet simple Gaussian
low-pass filter W to move out high-frequency information of
input images [58]. Specifically, W is a (4𝑘 + 1) × (4𝑘 + 1)
kernel matrix, and can be mathematically expressed as:

W𝑖, 𝑗 =
1

2𝜋𝜎2 exp
(
− 𝑖

2 + 𝑗2

2𝜎2

)
, (5)

where 𝜎 = 𝑘 determines the width of the filter W. As 𝜎

increases, more high-frequency components will be filtered
out. By tuning the value of 𝜎, we can obtain the high-
frequency component 𝑥ℎ of an input image 𝑥 with Eq. (6):

𝑥ℎ = 𝑥 −W ∗ 𝑥. (6)

The goal of the generator is changed to fool the 𝑓𝑠 with
P(𝑥𝑟𝑎𝑒), where the RAE 𝑥𝑟𝑎𝑒 is crafted by Eq. (7):

𝑥𝑟𝑎𝑒 = Clip𝑥,𝜖 (𝑥 + 𝑥ℎ + 𝐺 𝜃 (𝑥)) , (7)

Algorithm 1 The working process of CAA
Input: Benign image 𝑋 , low-pass filter W, source model

𝑓𝑠 (·) : X → Y, with X being ImageNet training set and
Y being ground-truth labels, image preprocessing function
P(·), number of iteration 𝑇 , and perturbation budget 𝜖

Output: Camouflaged adversarial example 𝑋𝑐𝑎𝑒

{Stage 1: Generate attack perturbations and RAEs }
1: Randomly initialize generator 𝐺 𝜃

2: repeat
3: Sample mini-batch of samples (𝑥, 𝑦) from X and Y
4: Calculate the loss L𝑎𝑑𝑣 by Eq. (8)
5: Optimize 𝛿∗ = 𝐺 𝜃 (𝑥) by maximizing L𝑎𝑑𝑣

6: until model converges
{Stage 2: Craft camouflage perturbations and CAEs }

7: Initialize the camouflage perturbation 𝛿

8: for 𝑖 = 1 to 𝑇 do
9: Extract high-frequency component 𝑋ℎ by Eq. (6)

10: Construct the RAE 𝑋𝑟𝑎𝑒 = Clip𝑥,𝜖 (𝑋 + 𝑋ℎ + 𝐺 𝜃 (𝑋))
11: Construct the CAE 𝑋𝑐𝑎𝑒 = Clip𝑥,𝜖 (𝑋𝑟𝑎𝑒 + 𝛿)
12: Calculate the total loss L𝑐𝑎𝑚 by Eq. (9)-Eq. (12)
13: Optimize 𝛿 by minimizing L𝑐𝑎𝑚

14: end for
15: return 𝑋𝑐𝑎𝑒 = Clip𝑥,𝜖 (𝑋𝑟𝑎𝑒 + 𝛿)

where 𝜖 is the perturbation budget and Clip𝑥,𝜖 (·) is a clip
function to bound 𝑥𝑟𝑎𝑒 within the range of [𝑥 − 𝜖, 𝑥 + 𝜖]. Next,
we define the following loss to guide the generator:

L𝑎𝑑𝑣 = CE
(
𝑓𝑠 (P(𝑥𝑟𝑎𝑒)) − 𝑓𝑠 (𝑥ℎ), 𝟙𝑦

)
, (8)

where CE is the relativistic cross-entropy loss [28] aiming to
increase the “fooling gap” ( 𝑓𝑠 (P(𝑥𝑟𝑎𝑒))𝑦 − 𝑓𝑠 (𝑥ℎ)𝑦) between
P(𝑥𝑟𝑎𝑒) and 𝑥ℎ. This loss would be higher when P(𝑥𝑟𝑎𝑒) is
scored significantly lower than 𝑥ℎ response for the ground-
truth label, i.e., 𝑓𝑠 (P(𝑥𝑟𝑎𝑒))𝑦 ≪ 𝑓𝑠 (𝑥ℎ)𝑦 . To illustrate the
optimization behavior, Fig. 23 of the Appendix compares
the training dynamics, showing that relativistic cross-entropy
achieves higher loss values and maintains high gradient norms
to ensure more effective optimization compared to standard
cross-entropy. In this way, the generator 𝐺 𝜃 learns a con-
trastive signal robust against variable high-frequency refer-
ences. Table XVIII of the Appendix shows that relativis-
tic cross-entropy loss improves the average ASR and CSR
by 2.4% and 1.5%, respectively, compared to simple cross-
entropy loss. Also, recent work shows that low-frequency
perturbations are highly effective against adversarially trained
models [8]. Hence, we perform denoising on input images be-
fore feeding to the generator, so that more attack perturbations
exist in the low frequency.

C. Feature-Level Camouflage

Given a benign image 𝑥 and the RAE 𝑥𝑟𝑎𝑒 = 𝑥 + 𝑥ℎ +
𝐺 𝜃 (𝑥), this stage aims to add the camouflage perturbation 𝛿

on the RAE to form the CAE. Following [59], we use one
intermediate layer to compute feature-level losses. As shown
in Figure 22 of the Appendix, this setting enables decent attack
and camouflage performance. Let 𝑓 𝑙𝑠 (·) denote the features
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Fig. 6. Comparison of frequency spectrum histograms (benign images vs.
RAEs and benign images vs. CAEs).

extracted from the 𝑙-th layer of the source model. First of all,
we define the benign feature similarity loss L𝑏 𝑓 making the
CAE resemble the benign image in the feature space:

L𝑏 𝑓 = −CS( 𝑓 𝑙𝑠 (𝑥𝑐𝑎𝑒), 𝑓 𝑙𝑠 (𝑥)), (9)

where CS is the cosine similarity score between the features of
CAEs and the benign features. The next thing is to let CAEs
show adversarial properties after preprocessing. Our empiri-
cal studies show that directly maximizing L( 𝑓𝑠 (P(𝑥𝑐𝑎𝑒)), 𝑦)
would make the preprocessed perturbations deviate from the
adversarial features, often leading to local optimization (per-
formance fell by more than 20%). Besides, 𝑙1 norm captures
the absolute differences of feature maps and is more sensitive
to detailed variations. Hence, we define the adversarial feature
distance loss L𝑎 𝑓 , so that after preprocessing, the CAEs
resemble the RAEs in the feature space:

L𝑎 𝑓 =∥ 𝑓 𝑙𝑠 (P(𝑥𝑟𝑎𝑒)) − 𝑓 𝑙𝑠 (P(𝑥𝑐𝑎𝑒)) ∥1, (10)

where 𝑙1 norm is used to determine the feature distance
between the preprocessed RAE and the preprocessed CAE.

Adopting loss L𝑏 𝑓 only makes CAEs close to benign
samples in feature space, without considering the distance
from RAEs. To further enhance transferability of camouflage
perturbations, we introduce the triplet loss to calculate the
contrastive distance among CAEs, RAEs, and benign images.
Let [·]+ denote max(0, ·). L𝑡𝑟 is defined as:

L𝑡𝑟 = 0.5
(
∥𝑧𝑥 − 𝑧𝑐𝑎𝑒∥22 + [𝛼 − ∥𝑧𝑟𝑎𝑒 − 𝑧𝑐𝑎𝑒∥2]2+

)
, (11)

where 𝑧𝑥 = 𝑓 𝑙𝑠 (𝑥), 𝑧𝑐𝑎𝑒 = 𝑓 𝑙𝑠 (𝑥𝑐𝑎𝑒), 𝑧𝑟𝑎𝑒 = 𝑓 𝑙𝑠 (𝑥𝑟𝑎𝑒), and
𝛼 is the expected margin between the features of CAEs and
those of RAEs. Here, the benign image acts as the anchor, and
the CAE and RAE act as the positive and negative samples,
respectively. As shown in Fig. 21 of the Appendix, applying
L𝑡𝑟 makes the CAEs close to benign images but far from
RAEs in the feature space, enabling in-class compactness and
inter-class separability. Finally, the total loss is defined as:

L𝑐𝑎𝑚 = 𝜆1 (L𝑏 𝑓 + L𝑡𝑟 ) + 𝜆2L𝑎 𝑓 , (12)

where 𝜆1 and 𝜆2 are hyperparameters to trade off each item.
The detailed working process of CAA is depicted in Alg. 1.

Remark 1. Although we do not directly constrain pertur-
bations within particular frequency domains, the defined loss
L𝑎𝑑𝑣 that requires attack perturbations to survive after pre-
processing, and the defined loss 𝐿𝑐𝑎𝑚 that makes camouflage
perturbations no longer work after preprocessing can achieve a

similar effect. From Fig. 6, we can see that compared with be-
nign images, the RAEs have more low-frequency information,
but the CAEs have more high-frequency information. This
means that the camouflage and attack perturbations are mostly
concentrated in the high- and low-frequency components of
input images, respectively. This conclusion is also supported
in Figs. 17-18 and Fig. 20 of the Appendix. As high-frequency
components are almost imperceptible to humans, existing
high-frequency-based attacks [35], [36] normally relax the
constraint on the size of high-frequency perturbations. Inspired
by this, we can provide a camouflage-enhanced version by
omitting the clip operations in Line 11 and Line 15 of Stage
2. From Fig. 7 and Table V, we observe that the CAEs crafted
by the camouflage-enhanced CAA are also visually similar to
the benign images and have fairly good imperceptibility.

Remark 2. The quantization process in JPEG compression
includes rounding operations, which are non-differential and
cannot be optimized via back-propagation. Following existing
work [60], we solve this problem by utilizing tangent function
to approximate rounding operations gradually.

VI. PERFORMANCE EVALUATION

The attack performance is assessed on 4 source models
and 22 target models, and compared with 14 adversarial
attacks. Due to limited space, this section only presents the
representative results on 2 source models. More comprehen-
sive experimental results are provided in the Appendix for
completeness. In the following evaluation, CAA includes the
denoising module, and the preprocessed module includes both
JPEG compression and downsampling unless otherwise stated.
To make a distinction, we use 𝐶𝐴𝐴 and 𝐶𝐴𝐴𝜏 to denote
the standard and camouflage-enhanced CAAs, respectively.
For 𝐶𝐴𝐴𝜏 , we omit the clipping operations in Line 11 and
Line 15 of Stage 2 to allow more high-frequency camouflage
perturbations. Consequently, ∥𝛿∗ + 𝛿∥ 𝑝 might exceed 𝜖 in
some cases. To be fair, we solely compared 𝐶𝐴𝐴 (with
clipping) with baselines and used 𝐶𝐴𝐴𝜏 as a reference only in
evaluating attack performance (i.e., Tables I, II, VI, and VII).

A. Experimental Settings

Models and Datasets. Source models are ResNet50 and
DenseNet201. The target models include 14 normally trained
models [61]–[67]: VGG16, VGG19, ResNet50, ResNet152,
DenseNet121, DenseNet169, DenseNet201, Visformer, Swin,
ViT-B, PiT-B, CaiT-S, LeViT, and HaloNet; 8 robust mod-
els [68], [69]: Inception-v3, Inception-v4, IncRes-v2, ResNet-
v2-101, Inc-v3𝑒𝑛𝑠3, Inc-v3𝑒𝑛𝑠4, IncRes-v2𝑒𝑛𝑠 , and Inc-v3𝑎𝑑𝑣

Among them, 12 models are selected for label detection.
Following [17], we use ImageNet as benchmark dataset, and
pick one random image from each class to form the test set,
ensuring each testing sample can be correctly classified by
almost all models.
Implementation Details. All experiments are conducted using
PyTorch on an NVIDIA RTX 4090 GPU. As in [28], we
construct the generator based on ResNet. In Stage 1, we adopt
the Adam optimizer with a learning rate of 2e − 4 for 10
epochs. In Stage 2, we set the iteration number to 𝑇 = 100.
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TABLE I
THE ASRS (%) ON NORMALLY TRAINED MODELS, WHERE “*” INDICATES WHITE-BOX ATTACKS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD AND

THE SECOND-BEST RESULTS ARE UNDERLINED. (ALL THE TABLES IN THIS PAPER ADOPT THE SAME MARKUP METHOD.)

Model Attack VGG16 VGG19 ResNet50 ResNet152 DenseNet121 DenseNet169 DenseNet201 Visformer Swin ViT-B PiT-B CaiT-S LeViT HaloNet AVG.
DIM 85.0 84.0 99.9* 91.1 92.8 91.7 91.3 44.4 42.1 19.8 29.5 33.5 48.3 62.1 65.4
TIM 56.0 56.2 99.9* 57.4 63.1 58.2 58.1 12.5 10.2 6.0 6.9 9.4 19.1 34.9 39.1
SSA 95.0 95.3 100.0* 97.7 96.5 96.9 96.7 58.0 57.0 26.2 37.4 41.0 64.5 72.2 73.9
CDA 94.9 92.8 99.7* 93.0 94.7 96.0 94.4 70.7 60.1 16.6 17.4 33.3 50.7 54.7 69.2
PGN 91.9 91.1 100.0* 97.4 95.9 96.6 95.6 52.6 51.8 26.3 34.6 42.9 61.2 68.2 71.9
HFA 93.3 92.1 99.1* 90.6 93.1 91.5 90.8 54.0 49.2 26.8 40.5 46.0 65.8 76.2 72.1

ResNet50 GE-AdvGAN 93.6 91.5 97.2* 69.7 59.9 62.6 57.1 14.9 12.5 3.5 4.6 8.8 24.1 34.2 45.3
(RN50) ILPD 94.4 95.1 100.0* 98.2 97.5 97.9 97.3 60.5 63.5 24.2 41.3 38.6 72.5 82.9 76.0

BSR-MI 98.3 97.1 100.0* 97.1 99.1 97.9 97.4 70.7 57.0 31.4 41.2 46.1 71.3 85.1 77.8
BSR-TI-DIM 97.5 96.3 100.0* 93.4 97.9 97.1 96.9 57.5 44.0 26.3 31.4 44.1 66.0 85.7 73.9

BSR-SI-TI-DIM 94.0 94.1 99.4* 89.3 97.4 96.4 96.5 49.1 36.0 11.9 14.2 22.4 48.9 71.5 65.8
BIA 94.2 91.9 98.5* 94.1 93.6 91.8 60.6 69.6 62.3 17.8 19.8 31.9 53.6 61.5 67.2

FAUG 86.4 86.5 100.0* 90.0 93.9 93.8 92.8 52.0 51.5 16.6 21.3 27.4 53.5 65.5 66.5
𝐶𝐴𝐴 96.0 95.8 99.5* 98.5 99.4 99.3 99.0 66.7 60.8 33.2 41.7 46.3 77.6 93.6 79.1
𝐶𝐴𝐴𝜏 96.9 97.2 99.6* 98.7 99.5 99.4 99.1 73.0 65.1 34.8 43.9 47.6 81.5 95.1 80.8
DIM 81.2 79.0 88.4 83.6 94.4 95.4 100.0* 53.8 44.5 21.3 33.4 37.2 53.9 68.3 66.7
TIM 52.3 52.4 57.7 46.6 72.9 74.6 100.0* 18.1 13.1 6.5 8.6 12.8 24.7 38.9 41.4
SSA 93.3 92.1 96.7 95.3 98.9 98.7 100.0* 76.3 70.8 40.2 54.6 59.7 74.9 83.2 81.1
CDA 95.7 96.4 95.8 90.1 95.1 98.6 99.3* 65.6 39.4 16.2 11.6 34.5 53.5 69.3 68.7
PGN 90.7 91.2 96.7 94.3 99.1 98.7 99.9* 71.8 68.0 42.0 53.0 60.7 73.7 81.7 80.1
HFA 91.7 90.7 91.9 88.3 94.4 94.4 99.4* 69.7 65.0 41.4 54.9 58.8 73.9 82.5 78.4

DenseNet201 GE-AdvGAN 97.1 96.4 91.3 86.0 93.9 93.3 95.9* 45.7 21.8 3.7 5.4 23.9 48.5 76.1 62.8
(DN201) ILPD 85.6 85.7 94.9 91.4 97.0 97.6 99.5* 74.0 66.4 39.3 51.4 54.9 65.1 74.2 76.9

BSR-MI 96.6 96.9 97.8 93.9 99.6 99.0 100.0* 74.2 60.8 32.5 48.7 53.0 74.1 91.0 79.9
BSR-TI-DIM 94.3 93.5 95.0 87.3 98.9 97.2 99.9* 54.6 37.1 24.3 33.1 42.5 66.1 87.7 72.3

BSR-SI-TI-DIM 89.6 88.4 90.1 80.8 97.1 96.0 99.7* 44.7 31.5 20.4 22.7 33.2 65.3 86.2 67.6
BIA 96.3 96.8 92.5 91.2 94.8 94.2 96.6* 56.8 28.8 20.3 12.8 33.3 55.8 66.2 66.9

FAUG 82.5 80.9 89.6 83.4 95.0 96.6 99.8* 60.6 46.3 24.1 28.3 38.3 58.4 71.7 68.3
𝐶𝐴𝐴 98.9 98.6 97.6 97.3 98.9 99.1 99.3* 85.8 72.4 46.5 55.1 66.6 89.6 97.1 85.9
𝐶𝐴𝐴𝜏 99.1 98.7 98.0 97.9 99.0 99.2 99.4* 87.2 74.3 49.7 57.1 69.8 90.7 97.3 87.0

Following [59], we select layer3 of ResNet50, denseblock3
of DenseNet201, the second InceptionC module of Inc-v3,
and the third InceptionB module of Inc-v4 to extract features.
For compression, we use the standard JPEG algorithm, and
set quality factors to [20, 80]. For scaling, we use bilinear
interpolation and set the image sizes to [400, 500]. The default
input size and quality factor is 448×448 and 50, respectively.
Baselines. We compare our CAA with 14 adversarial at-
tacks under perturbation budget 𝜖 = 16/255: 1⃝ Input
transformation-based attacks: BSR [17], DIM [14], and
TIM [15]; 2⃝ Frequency-based attacks: SSA [25], HFA [27],
and GE-AdvGAN [26]; 3⃝ Loss-based attacks: CDA [28] and
PGN [29]; 4⃝ Feature-based attacks: BIA [19], ILPD [20]
and FAUG [22]; 5⃝ Imperceptible attacks: SSAH [36], Ad-
vDrop [35], and AdvAD [37]. For fair comparison, the hyper-
parameters of baselines follow the optimal settings in respec-
tive literature. For instance, BSR generates 20 transformed
input copies to compute the averaged gradient, DIM adopts
the transformation probability of 0.5, and TIM utilizes the
Gaussian kernel with the size of 15×15. Besides, GAN-based
baselines train the generators for 10 epochs, while all iterative
baselines equipped with the momentum term 𝜇 = 1.0 are run
for 10 iterations, except ILPD, which uses 100 iterations as
recommended in its original implementation.
Metrics. We use the ASR to evaluate the attack performance,
where the ASR is the ratio of the traditional AEs or our
preprocessed CAEs being misclassified by target models. And
we use the CSR and detection evasion rate to evaluate the
camouflage effect, where the CSR is the ratio of the CAEs
or AEs being classified into correct labels by label detection
models, and the detection evasion rate denotes the ratio of

the CAEs or AEs being determined as benign samples by
adversarial detection models. Moveover, we report the average
results of 5 trials, with a standard deviation of less than 0.8%.

B. Effectiveness of CAA

Transferability. We compare CAA with 11 transferable
baselines against both normally trained and robust models.
From Table I, we can see that our CAA shows excellent
adversarial transferability on normally trained models. The
performance of CAA surpasses the SOTA BSR attack. For
example, when DN201 is the source model, CAA outperforms
BSR by 4.8%. This indicates that our CAA exhibits superior
adversarial transferability even while maintaining camouflage.
From Table II, we can observe that CAA shows the best attack
performance on robust models, significantly surpassing BSR.
This can be attributed to the HFR and denoising modules
that make attack perturbations mostly concentrate in the low-
frequency domain, showing high transferability.

Camouflage. CAA is the first work on camouflage, and the
CSR of each baseline can be directly calculated by subtracting
the ASR in Table I from one. Hence, we only evaluate the
CSRs of our CAA in the experiments, and use both normally
and adversarially trained models for label detection. From
Table III, we can observe that the white-box CSRs reach over
97%, and the average CSRs on normally and adversarially
trained models are more than 63.0% and 84.3%, respectively.
Adversarially trained models are robust against perturbations,
which can output the correct labels with high probabilities.
In other words, they are more easily “deceived” by CAEs
than normally trained models. Besides, 𝐶𝐴𝐴𝜏 does not restrict
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TABLE II
THE ASRS (%) ON ROBUST MODELS, INCLUDING FOUR ADVERSARIALLY TRAINED MODELS: Inc-V3𝑒𝑛𝑠3 , Inc-V3𝑒𝑛𝑠4 , IncRes-V2𝑒𝑛𝑠 , AND Inc-V3𝑎𝑑𝑣 .

Models Attack Inception-v3 Inception-v4 IncRes-v2 ResNet-v2 Inc-v3𝑒𝑛𝑠3 Inc-v3𝑒𝑛𝑠4 IncRes-v2𝑒𝑛𝑠 Inc-v3𝑎𝑑𝑣 AVG.

RN50

DIM 73.0 69.8 66.7 77.1 53.3 50.0 39.8 57.6 60.9
TIM 29.6 26.3 20.2 32.1 26.7 28.4 19.4 24.9 26.0
SSA 89.0 84.6 83.2 90.9 68.0 63.6 50.6 73.9 75.5
CDA 92.7 87.4 78.5 91.1 76.2 61.7 50.2 71.7 76.2
PGN 84.3 77.9 76.8 85.5 69.5 68.8 54.5 72.4 73.7
HFA 83.3 80.1 80.5 84.1 65.8 62.6 49.5 71.5 72.2

GE-AdvGAN 63.9 55.7 44.9 69.1 51.1 42.2 27.4 58.7 51.6
ILPD 91.3 90.8 91.3 91.1 72.5 69.0 55.3 77.8 79.9

BSR-MI 96.2 90.3 86.7 90.5 78.0 77.2 66.4 81.0 82.8
BSR-TI-DIM 86.1 84.5 76.0 83.8 75.1 76.5 65.2 76.7 78.0

BSR-SI-TI-DIM 84.8 82.0 76.9 83.7 76.6 78.3 67.6 78.6 78.6
BIA 93.6 88.7 75.6 89.5 78.3 63.4 48.7 78.3 76.4

FAUG 75.2 68.0 68.7 76.7 55.3 53.7 42.5 59.1 62.4
𝐶𝐴𝐴 97.6 96.8 93.3 98.9 97.1 93.8 96.3 96.8 96.3
𝐶𝐴𝐴𝜏 98.1 97.6 95.4 99.0 98.0 95.4 97.4 97.9 97.4

DN201

DIM 72.3 71.4 66.3 76.0 54.6 54.2 43.6 61.4 62.5
TIM 32.8 29.6 24.3 31.8 28.9 31.3 23.2 28.8 28.8
SSA 91.8 89.6 87.3 91.5 78.6 76.3 68.4 82.4 83.2
CDA 89.3 89.7 78.4 94.9 80.7 69.5 51.7 74.7 78.6
PGN 87.5 85.2 83.8 87.9 78.6 77.1 67.9 80.8 81.1
HFA 87.1 84.5 82.6 87.3 74.5 72.4 62.0 77.0 78.4

GE-AdvGAN 86.0 88.0 78.6 81.6 55.8 48.7 39.1 67.2 68.1
ILPD 81.7 81.1 79.7 83.0 53.2 49.9 37.8 62.0 66.1

BSR-MI 93.3 92.3 87.6 91.8 76.6 77.4 66.4 82.3 83.5
BSR-TI-DIM 86.5 83.5 75.0 81.9 74.4 74.6 65.0 76.4 77.2

BSR-SI-TI-DIM 78.5 77.1 68.0 76.7 73.7 76.0 63.9 74.0 73.5
BIA 91.2 90.8 76.3 91.8 83.2 72.5 48.6 76.9 78.9

FAUG 78.2 74.5 72.0 79.9 58.3 57.0 42.9 63.1 65.7
𝐶𝐴𝐴 98.3 98.3 94.7 97.5 88.8 87.8 81.9 89.2 92.1
𝐶𝐴𝐴𝜏 98.4 98.3 95.6 97.8 90.4 89.3 83.9 91.5 93.2

TABLE III
THE CSRS (%) ON NINE NORMALLY TRAINED MODELS AND THREE ADVERSARIALLY TRAINED MODELS.

Models Attack VGG16 VGG19 RN50 RN152 DN121 DN169 DN201 Visformer Swin Inc-v3𝑒𝑛𝑠3 Inc-v3𝑒𝑛𝑠4 IncRes-v2𝑒𝑛𝑠

RN50 𝐶𝐴𝐴 54.5 49.0 98.1* 75.5 56.0 68.4 72.1 66.9 84.5 82.3 84.3 86.2
𝐶𝐴𝐴𝜏 62.1 60.5 98.1* 94.0 82.3 86.2 87.6 67.1 84.7 82.9 85.0 87.2

DN201 𝐶𝐴𝐴 49.3 50.8 68.0 71.0 73.8 73.2 97.7* 34.1 49.4 79.2 85.8 90.8
𝐶𝐴𝐴𝜏 58.5 65.3 87.8 90.5 91.1 92.4 97.7* 53.3 55.1 92.6 91.2 93.9

TABLE IV
COMPARISON OF EVASION RATES (%) AGAINST ADVERSARIAL DETECTION.

Models DIM TIM SSA CDA PGN HFA GE-AdvGAN ILPD BSR-MI BSR-TI-DIM BSR-SI-TI-DIM BIA 𝐶𝐴𝐴 𝐶𝐴𝐴𝜏

RN50 21.8 50.2 13.2 13.3 17.9 20.1 39.7 13.6 11.6 12.9 19.8 36.9 84.3 85.4
DN201 22.3 45.2 12.3 13.9 9.7 14.7 22.6 14.7 11.6 18.5 21.2 18.6 83.6 89.2

the size of high-frequency camouflage perturbations, thus
exhibiting better performance than 𝐶𝐴𝐴. Apart from CSRs,
we compare our CAA and baselines in terms of the evasion
rate against adversarial detection [6]. From Table IV, we can
see that CAA can achieve the detection evasion rate of 89.2%
which is about 4 times higher than all baselines. Thus, our
CAA is more likely to successfully launch attacks against
computer vision systems equipped with adversarial detection
mechanisms. In contrast, traditional AEs can be easily detected
and filtered out before reaching the target model.

Visualization of CAEs. Let 𝐶𝐴𝐸 and 𝐶𝐴𝐸𝜏 denote the
CAEs crafted by 𝐶𝐴𝐴 and 𝐶𝐴𝐴𝜏 , respectively. Fig. 7 visu-
alizes five randomly selected 𝐶𝐴𝐸 and 𝐶𝐴𝐸𝜏 , respectively.
Here, we observe that both 𝐶𝐴𝐸 and 𝐶𝐴𝐸𝜏 are visually
similar to the benign images. In addition, from the right
side of Fig. 7, we can see that 𝐶𝐴𝐸𝜏 contains more high-

frequency information compared to 𝐶𝐴𝐸 . The reason is that
𝐶𝐴𝐴𝜏 removes the clipping operations in Stage 2, so that
more camouflage perturbations can be injected into the high-
frequency domain. Besides, we use PSNR, SSIM, and LPIPS
to measure the imperceptibility to the human visual system.
As shown in Table V, although not as good as imperceptible
attacks, the imperceptibility of CAA is comparable to SOTA
transferable attacks, like ILPD, HFA, and BSR.

Real-World Attack. In a real-world scenario, we first create
a CAE of a large scale size (448× 448) and a large storage size
(≥ 330 KB), and then send it to remote Vision APIs, including
Baidu Cloud1, Alibaba Cloud2, and Tencent Cloud3. In our
local machine, the source model is DN201, and the average

1https://cloud.baidu.com/product/imagerecognition/general
2https://vision.console.aliyun.com
3https://console.cloud.tencent.com/tiia/detectlabel



10

Fig. 7. Visualization and frequency spectrum histograms under source model RN50. Left: The 1st, 2nd, and 3rd rows show the benign images, 𝐶𝐴𝐸, and
𝐶𝐴𝐸𝜏 , respectively; Right: The frequency spectrum histograms of benign image, 𝐶𝐴𝐸, and 𝐶𝐴𝐸𝜏 .

TABLE V
COMPARISON OF IMPERCEPTIBLE METRICS. SOURCE MODEL: RN50.

Attacks PSNR ↑ SSIM ↑ LPIPS ↓
DIM 24.97 0.71 0.47
TIM 24.93 0.81 0.43
SSA 24.80 0.70 0.48
PGN 24.61 0.72 0.47
ILPD 23.72 0.64 0.53
HFA 23.35 0.60 0.52
BSR-MI 24.89 0.71 0.49

Transferable BSR-TI-DIM 24.71 0.74 0.48
Attacks BSR-SI-TI-DIM 24.63 0.73 0.48

FAUG 23.72 0.64 0.51
CDA 23.92 0.68 0.54
BIA 23.88 0.69 0.55
GE-AdvGAN 23.58 0.66 0.54
𝐶𝐴𝐴 24.64 0.69 0.41
𝐶𝐴𝐴𝜏 23.20 0.64 0.40

Imperceptible AdvDrop 28.73 0.93 0.27
Attacks SSHA 30.31 0.98 0.18

AdvAD 30.45 0.98 0.17

TABLE VI
COMPARING OF ASRS (%) AGAINST REAL-WORLD MODELS.

APIs SSA CDA PGN HFA ILPD BSR-MI 𝐶𝐴𝐴 𝐶𝐴𝐴𝜏

Baidu 77 74 73 70 65 78 81 82
Alibaba 68 72 69 68 55 77 88 80
Tencent 69 81 68 67 66 67 89 82

CSR on 9 normally trained models (as shown in Table III)
is higher than 70%. That is, the CAEs is visually similar
to benign images while behaving normally. However, once
preprocessing is executed in the cloud-based deep learning
pipeline, the CAE turns into an AE, misleading the classifier
to make a wrong prediction. To have a better comparison we
choose 6 well-performing baselines to craft AEs and feed them
to the above APIs. We consider an attack successful if the
ground-truth label of a clean sample is not present in the
top-5 list of the APIs’ predictions. To reduce deviation, we
randomly select 100 AEs or CAEs generated by each attack

TABLE VII
THE ASRS (%) AGAINST DEFENSE METHODS. TOP: SOURCE MODEL

RN50. BOTTOM: SOURCE MODEL DN201.

Attack Bit-RD R&P HGD NIPS-r3 JPEG FD DiffPure OSCP AVG.
DIM 78.7 79.9 60.2 66.6 75.4 79.5 27.4 22.5 61.3
TIM 50.0 52.8 24.8 20.2 54.9 64.3 17.7 17.4 37.8
SSA 88.3 84.9 69.8 84.4 86.3 88.3 32.8 28.1 70.4
CDA 86.9 80.4 86.9 82.9 73.6 85.3 31.9 35.2 70.4
PGN 86.0 84.3 70.7 77.3 86.0 88.3 38.7 33.3 70.6
HFA 84.5 83.5 64.6 80.8 82.8 87.6 42.8 39.1 70.7

GE-AdvGAN 62.3 49.3 39.7 51.0 57.4 69.1 14.2 18.9 45.2
ILPD 83.0 89.4 78.1 90.8 89.6 75.5 46.3 41.9 74.3

BSR-MI 89.3 92.2 82.8 91.2 88.7 90.9 47.5 37.5 77.5
BSR-TI-DIM 85.8 91.0 81.6 81.0 87.5 91.7 49.0 40.4 76.0

BSR-SI-TI-DIM 67.2 90.5 78.4 75.6 86.1 92.0 49.1 38.3 72.2
BIA 87.8 79.5 84.8 81.6 75.5 87.2 33.1 31.2 70.1

FAUG 80.5 80.5 47.0 69.7 78.0 83.3 27.0 17.6 60.5
𝐶𝐴𝐴 87.8 88.4 98.8 93.4 91.0 85.1 47.9 53.4 80.7
𝐶𝐴𝐴𝜏 89.6 90.4 98.9 95.4 92.3 88.6 51.5 57.6 82.9

DIM 77.9 80.9 61.6 65.9 77.7 81.8 28.9 30.8 63.2
TIM 52.7 59.6 28.4 23.3 58.3 67.5 23.3 21.1 41.8
SSA 91.0 90.0 82.6 87.6 90.0 91.2 48.2 44.4 78.1
CDA 85.4 84.7 89.9 81.4 78.5 85.9 30.4 33.6 71.2
PGN 89.9 89.6 80.6 83.6 90.1 91.5 54.4 48.4 78.5
HFA 84.5 87.6 75.8 82.2 86.5 89.0 56.2 49.9 76.5

GE-AdvGAN 80.2 71.4 62.1 82.4 80.2 80.1 31.9 36.0 65.5
ILPD 87.2 85.0 66.5 76.9 83.6 84.7 34.4 35.9 69.3

BSR-MI 90.3 92.6 82.9 88.6 90.2 92.2 39.1 44.5 77.6
BSR-TI-DIM 83.3 90.7 78.7 74.7 87.1 91.8 44.3 42.1 74.1

BSR-SI-TI-DIM 62.7 89.1 73.8 67.3 84.9 91.9 44.6 40.6 69.4
BIA 87.2 83.5 88.3 78.9 79.6 87.4 33.8 35.6 71.8

FAUG 82.7 85.1 64.2 72.3 82.1 86.2 36.7 35.7 68.1
𝐶𝐴𝐴 93.4 93.2 94.3 93.3 91.0 92.9 60.8 60.5 85.3
𝐶𝐴𝐴𝜏 94.2 93.9 94.6 93.8 93.6 94.2 63.6 62.9 86.9

for testing. From Table VI, we can see that CAA always
performs best among all competitors. This further validates
our insight, revealing the potential security risks introduced by
data preprocessing operations in adversarial attacks. Besides,
we find that 𝐶𝐴𝐴 achieves a higher ASR than 𝐶𝐴𝐴𝜏 . This
is possibly because the camouflage features of 𝐶𝐴𝐴𝜏 are not
fully filtered out.
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Fig. 8. Average ASRs (%) under varying JPEG/scaling algorithms (source
model DN201). S-JP: Standard JPEG, P-JP: Progressive JPEG, JP-2: JPEG
2000; BIL: Bilinear Interpolation, BIC: Bicubic Interpolation, AREA: Area
Interpolation, NN: Nearest Neighbor Interpolation. The source model is
DenseNet201. Left: Results on 𝐶𝐴𝐴 and Right: Results on 𝐶𝐴𝐴𝜏 .
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Fig. 9. Average ASR (%) under varying quality factors (image scale is fixed
to 448 × 448). Left: Source model RN50. Right: Source model DN201.
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Fig. 10. Average ASR (%) under varying input scales (quality factor is fixed
to 50). Left: Source model RN50. Right: Source model DN201.

C. Robustness

Adversarial Robustness. We compare the ASRs between
CAA and transferable baseline attacks against 8 defense
methods: Bit-RD [5], R&P [48], HGD [49], NIPS-r3 [70],
JPEG [46], FD [47], DiffPure [51], and OSCP [71]. Table VII
shows that CAA has superior robustness against defense
methods. Especially for HGD, CAA achieves the best ASR
of 94.3%. This is because the attack perturbations mainly lie
in the low-frequency domain, which are hard to be removed
by denoising-based defenses like HGD. Besides, target models
may adopt different scaling or compression algorithms and
parameters, and we further test the average ASRs of CAA
against 9 normally trained models (as shown in Table III)
under varying settings. From Fig. 8-Fig. 10, we can see that
CAA maintains strong attack performance across different
scaling/compression algorithms, and the ASRs show negligible
fluctuations with the change of quality factors or input scales.
This benefits from the use of random compression ratios and
random input sizes during the generator training and iterative
optimization stages.

Camouflaged Robustness. Apart from scaling and com-
pression, the deep learning pipeline may perform other pre-
processing operations. Therefore, we evaluate the robustness
of CAEs against the most common preprocessing operations
adopted by popular deep learning frameworks. Specifically,

TABLE VIII
AVERAGE ASRS (%) WHEN ADDITIONAL PREPROCESSING OPERATIONS

ARE EXECUTED BEFORE TRIGGERING.

Models Attack Cropping Padding Filtering Sharpening CE Normalization AVG.

RN50 𝐶𝐴𝐴 87.5 86.9 93.6 88.2 95.0 99.0 91.7
𝐶𝐴𝐴𝜏 85.5 86.6 95.3 91.3 95.8 98.7 92.2

DN201 𝐶𝐴𝐴 85.7 86.4 93.1 98.5 94.9 98.4 92.8
𝐶𝐴𝐴𝜏 72.2 78.3 89.3 99.2 96.0 98.9 89.0

we evaluate the attack performance when extra preprocessing
operations are applied before the scaling and compression.
Table VIII shows that CAA keeps an ASR over 89.0% when
cropping, padding, filtering, sharpening, contrast enhancement
(CE), or normalization is executed together with scaling and
compression, further validating its camouflaged robustness.

D. Comparisons with Other Attacks

Imperceptible Attacks. At the high-level view, the purpose
of Stage 2 is similar to that of imperceptible attacks, i.e.,
changing the labels of input samples by manipulating high-
frequency components. The only difference is that Stage 2
aims to change the fake labels back to ground-truth labels,
while imperceptible attacks aim to change the ground-truth
labels to fake labels. Therefore, we compare the CSRs of our
CAA with the ASRs of imperceptible attacks. As shown in
Table IX, AdvDrop, SSHA, and our CAA all demonstrate
excellent performance in white-box attacks, yet the transfer-
ability of the contrastive methods is significantly lower than
that of our CAA. This is because those methods aim to ensure
the imperceptibility of adversarial samples without limiting
the strength of high-frequency perturbations, and thus easy to
overfit the source model. In contrast, our CAA adopts feature-
level camouflage and uses triplet loss to enhance the high-
frequency transferability. Besides, recent AdvAD employed
diffusion model to generate natural AEs under unconstrained
perturbations, but still lack adversarial transferability.

Scaling Attacks. We first compare our CAA with scaling
attack in terms of the visual effects after image scaling. From
the first two rows of Fig. 11, we can see that after scaling,
the camouflage image generated through SA is completely
transformed into an entirely different image, whereas the CAE
generated by our CAA exhibits no noticeable visual changes.
For SA, such dramatic dissimilarity before and after scaling
can easily be detected by human eyes. But our CAA can
effectively resist human inspection. Next, we compare our
CAA with SA in terms of the robustness against camouflage
detection methods. Decamouflage [12] as the SOTA detection
method against camouflage attacks proposed two independent
detection strategies: filter detection and steganalysis detection.
From their experimental results, we can know that: (1) For be-
nign images, there is no significant visual difference before and
after filter operations; (2) There is only a central spectral point
when benign samples are transformed into Fourier spectra by
frequency-domain-based steganalysis. From the third and forth
rows of Fig. 11, we can observe that both the maximum
and minimum filtering can expose triggers hidden in the
camouflage image generated by the SA, resulting in significant
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TABLE IX
THE ASRS (%) OF IMPERCEPTIBLE BASELINE ATTACKS AND THE CSRS (%) OF OUR CAA ON NINE NORMALLY TRAINED MODELS.

Models Attack VGG16 VGG19 ResNet50 ResNet152 DenseNet121 DenseNet169 DenseNet201 Visformer Swin AVG.

RN50

AdvDrop 4.2 4.3 96.8* 2.9 4.5 3.8 3.0 0.9 0.6 13.4
SSHA 0.9 0.9 97.3* 0.6 1.0 0.4 0.6 0.1 0.1 11.3

AdvAD 2.2 3.9 99.8* 2.7 3.5 3.2 2.6 0.4 0.5 13.2
𝐶𝐴𝐴 54.5 49.0 98.1* 75.5 56.0 68.4 72.1 66.9 84.5 69.4
𝐶𝐴𝐴𝜏 62.1 60.5 98.1* 94.0 82.3 86.2 87.6 67.1 84.7 80.3

DN201

AdvDrop 4.2 4.4 4.0 3.3 7.2 7.7 95.9* 1.4 1.1 14.4
SSHA 7.0 3.5 5.0 2.5 7.3 6.5 99.1* 0.4 0.9 14.7

AdvAD 2.2 3.5 3.5 2.6 8.3 8.9 99.7* 0.2 0.6 14.4
𝐶𝐴𝐴 49.3 50.8 68.0 71.0 73.8 73.2 97.7* 34.1 49.4 63.0
𝐶𝐴𝐴𝜏 58.5 65.3 87.8 90.5 91.1 92.4 97.7* 53.3 55.1 76.9

Fig. 11. Comparison results of scaling attack (SA) and CAA. The 1st row
shows the benign image, the camouflage image of SA, and the CAE generated
by CAA. The 2nd row depicts the results after image scaling. The 3rd and
4th rows show the filtering detection results using maximum and minimum
filtering respectively. The 5th row shows the steganography detection results.

visual differences from benign image. In contrast, even the
most effective minimum filtering cannot detect anomalies from
the CAE generated by our CAA. From the last row of Fig. 11,
we can see that after steganalysis, the camouflage image
generated by the SA present multiple central spectral points,
but those by our CAA present only one central point. Hence,
our CAA can successfully evade camouflage detection.

E. Ablation Studies

In the ablation studies, we adopt RN50 as the source model
and use the average ASRs and CSRs on 9 normally and 3
adversarially trained models (as shown in Table III) to assess

TABLE X
ABLATION STUDY ON THE HFR MODULE AND TRIPLET LOSS.

Attack
Normally trained models Adversarilly trained models
w/o HFR w/o L𝑡𝑟 w/o HFR w/o L𝑡𝑟

ASR CSR ASR CSR ASR CSR ASR CSR
𝐶𝐴𝐴 ↓4.3 ↑4.3 ↓0.5 ↓6.5 ↓26.6 ↓1.6 ↓0.5 ↓1.0
𝐶𝐴𝐴𝜏 ↓0.7 ↓2.8 ↓1.6 ↓4.0 ↓17.8 ↓10.9 ↓0.8 ↓0.4
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Fig. 12. Ablation study on margin 𝛼 of triplet loss defined in Eq. (11). Left:
Results on 𝐶𝐴𝐴. Right: Results on 𝐶𝐴𝐴𝜏 .

the effectiveness of key components and hyper-parameters.
The detail analyses are shown in Table XVII of the Appendix.

The HFR Module. Table X shows that the HFR module
can significantly improve the ASRs on both normally and ad-
versarially trained models. Especially for adversarially trained
models, this module plays a key role, improving ASRs and
CSRs dramatically. Besides, we also observe that for normally
trained models, this module plays a negative influence on
CSRs. The reason is that the HFR module may inhibit the
amount of high-frequency camouflage perturbations, which
also explains why 𝐶𝐴𝐴𝜏 is less affected.

The Triplet Loss. From Table X, we can see that the triplet
loss can significantly improve the CSRs on normally trained
models while well maintaining the ASRs. This confirms that
the triplet loss not only contributes to promoting the transfer-
ability of camouflage perturbations, but also helps to strike a
balance between camouflage and transferability. But the triplet
loss has minor effects on the CSRs of adversarially trained
models, which have more robust decision boundaries than the
normally trained ones. From Fig. 12, we can see that our CAA
consistently yields the best performance when 𝛼 = 0.2.

The Impact of Denoising Module. From Table XI, we
can observe that this module can largely improve both the
ASRs and CSRs against adversarially trained models. But for
normally trained models, the denoising module will cause a
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TABLE XI
ABLATION STUDY ON THE IMPACT OF DENOISING FUNCTION.

Attack
Normally trained models Adversarially trained models

w/o denoising w/o denoising
ASR CSR ASR CSR

𝐶𝐴𝐴 ↓10.1 ↑9.7 ↓14.3 ↓17.2
𝐶𝐴𝐴𝜏 ↓ 5.8 ↓3.5 ↓ 9.2 ↓29.2
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Fig. 13. Ablation study on JPEG/Scaling operations.

large decline in CSRs. The reason is that after denoising the
gradients of input images are more smooth, which facilitates
the effects of HFR module. For camouflage effects, this
module has a similar function as the HFR module.

JPEG/Scaling Operations. Let P𝑠 , P𝑐 and P𝑠+𝑐 denote
the scaling, JPEG compression, and scaling plus compression
operations, respectively. Each operation type will be simulta-
neously performed on source and target models. From Fig. 13,
we can observe that P𝑠+𝑐 allows our CAA to achieve the
best attack and camouflage performances. This occurs because
compared with a single preprocessing operation, P𝑠+𝑐 can
drop more high-frequency information, leaving more room
for injecting camouflage perturbations. For a similar reason,
different JPEG/scaling operations mainly impact the CSRs.

Hyperparameters. 𝜆1 controls the contributions of benign
feature similarity loss and triplet loss, while 𝜆2 regulates
adversarial feature distance loss. Therefore, 𝜆1 contributes
to camouflage effects and 𝜆2 is related to attack effects.
From Fig. 14, we can observe that these hyperparameters
significantly affect the performance of 𝐶𝐴𝐴. For instance,
𝜆2 increases, the ASR shows an increasing trend, but the
CSR significantly decreases. As shown in Fig. 15, we can
observe that the hyperparameters affect the ASRs and CSRs
of 𝐶𝐴𝐴𝜏 . For example, when 𝜆1 remains constant, the CSR
of 𝐶𝐴𝐴𝜏 shows a relatively noticeable variation compared to
ASRs. Compared to 𝐶𝐴𝐴, the ASRs and CSRs of 𝐶𝐴𝐴𝜏 show
relatively smoother trends. This is because the unrestricted
camouflage perturbations reduce the influence of hyperparam-
eters. As a trade-off, we set 𝜆1 = 150, and 𝜆2 = 1.0 in the
experiments. Note that L𝑏 𝑓 and L𝑡𝑟 play the same role of
making CAE close to benign samples. Thus, binding them
together in the optimization helps to stabilize gradients and
avoid overfitting. Fig. 24 of the Appendix further validated
the effectiveness of this setting.

F. Efficiency Analysis.
To evaluate the practicality of CAA, we compare the

runtime and resource consumption with 11 baselines. As
shown in Table XII, Stage 1 of CAA requires approximately
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Fig. 14. Ablation study on the hyperparameters of 𝐶𝐴𝐴. Left: 𝜆1 is fixed
to 150. Right: 𝜆2 is fixed to 1.0.
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Fig. 15. Ablation study on the hyperparameters of 𝐶𝐴𝐴𝜏 . Left: 𝜆1 is fixed
to 150. Right: 𝜆2 is fixed to 1.0.

TABLE XII
COMPARISON OF RUNTIME AND RESOURCE CONSUMPTION.

Attack GPU Memory Training Time Iteration Time Inference Time
(GB) (ℎ) (𝑠 / sample) (𝑚𝑠 / sample)

DIM 2.4 – 0.03 –
TIM 2.4 – 0.03 –
SSA 2.5 – 0.34 –
PGN 2.5 – 0.41 –
HFA 3.8 – 0.80 –
ILPD 2.5 – 0.22 –

BSR-MI 20.7 – 0.25 –
BSR-TI-DIM 20.7 – 0.26 –

BSR-SI-TI-DIM 20.7 – 0.26 –
FAUG 4.9 – 0.10 –
CDA 6.2 12.3 – 5.2

GE-AdvGAN 5.1 25.3 – 6.7
BIA 7.5 15.6 – 5.5

10.0 (Stage 1) 1.6 5.3CAA 11.9 (Stage 2) 15.1 (Stage 2) (Stage 1)

batch size = 10. source model: RN50. Among all baselines, only CDA,
GE-AdvGAN, and BIA are GAN-based methods.

15.1 (ℎ), which is notably more efficient than GE-AdvGAN
(25.3 ℎ) and comparable to BIA (15.6 ℎ). Once the GAN
is trained, the inference time is negligible. Stage 2 of CAA
iteratively optimizes each input and takes about 1.6 (𝑠) per
sample, which is higher than iteration-based baselines. The
main reason is that Stage 2 requires more iterations (𝑇 = 100)
to find the balance between camouflage and transferability,
while the iteration-based baselines requires only 10 iterations
to optimize perturbations. It is worth noticing that the more
iterations in Stage 2, the lower the ASR, but higher the CSR.
As shown in Fig. 16, when 𝑇 = 10 (running time is 0.24
𝑠/sample), the average ASR rises to 91.6%, but the CSR drops
to 37.2%; when 𝑇 = 0, CAA performs only Stage 1 and
degrades into traditional adversarial attacks. At this time, the
average ASR rises to 92.8%, but the CSR drops to 7.2%.

In terms of GPU memory usage, Stage 1 of CAA consumes
more resources than GAN-based baselines. This is because
CAA takes images of larger size (448×448) as input compared
with baselines’ input size (224 × 224). For the same reason,
Stage 2 of CAA also consumes more resources than most
of the iteration-based baselines. But Stage 2 of CAA is
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Fig. 16. Effect of iteration number in Stage 2. 𝑇 = 0 means running Stage 1
only. Left: Results on 𝐶𝐴𝐴. Right: Results on 𝐶𝐴𝐴𝜏 . Source model: RN50.

significantly more efficient than the SOTA iterative method,
BSR, which requires over 20 GB of memory to maintain
multiple transformed inputs. Overall, the comparison results
indicate that CAA achieves great camouflage while preserving
superior adversarial transferability at moderate costs, thus
demonstrating its feasibility for real-world applications.

VII. DISCUSSION

A. Difference from Backdoor Attacks.

While CAA shares the notion of “trigger activation” with
backdoor attacks, the two consider different threat models:
• Adversarial Knowledge. Unlike CAA launching black-

box attacks, backdoor attacks have white-box access to
the training data, training processes, and model weights.

• Attack Goals. Unlike CAA aiming to achieve camouflage
and transferability at once, backdoor attacks focus on
making the poisoned model predict the attacker-chosen
labels only when getting inputs with a specific trigger.

• Attack Phase. Backdoor attacks take place in the training
phase, requiring modifying the model parameters. Instead,
our CAA launches attacks in the inference phase.

Compared with our CAA, backdoor attacks have the fol-
lowing characteristics: (1) Lacking Transferability. Backdoor
attacks are effective only for poisoned models, and cannot
transfer to unseen models. (2) Lacking Camouflage. In back-
door attacks, the benign samples and poisoned counterparts
have differentiable characteristics in the feature space, and thus
can be detected by feature-space defenses [72]. (3) Visible
Trigger. Traditional backdoor attacks typically use simple
patterns of fixed-sizes as their triggers, which can be easily
caught by human inspection and input detection [73], [74].

B. Attack Feasibility

In practical scenarios, the target model may or may not
execute the specified preprocessing operations. If the target
model does not perform specified preprocessing operation,
CAEs will not be activated, failing to achieve an attacking
effect. Following scaling attack [11], we propose Alg. 2 to
infer the preprocessing operations adopted by target models to
increase ASR. In a nutshell, this algorithm infers the executed
preprocessing operations by analyzing the prediction consis-
tency between benign samples and customized CAEs. We can
set the accuracy threshold 𝛾 below the average CSR (e.g.,
𝛾 = 0.5) to avoid missing potential preprocessing operations.
It is worth noticing that the “inference granularity” can be
adjusted by setting the preprocessing operation set P. A larger

Algorithm 2 Preprocessing Operations Inference
Require: Target model 𝑓𝑡 (e.g., cloud vision API), prepro-

cessing operations P = {𝑝1, 𝑝2, . . . }, benign images 𝑋 =

{𝑥𝑖}𝑁𝑖=1, accuracy threshold 𝛾

Ensure: Inferred preprocessing algorithm p∗
p∗ ← ∅
for 𝑝 𝑗 ∈ P do

Generate camouflaged adversarial examples 𝑋
𝑝 𝑗

𝑐𝑎𝑒 =

{𝑥 𝑝 𝑗

𝑖
}𝑁
𝑖=1 from 𝑋 via 𝐶𝐴𝐴 tailored to 𝑝 𝑗

𝐴𝐶𝐶 𝑗 ← 1
𝑁

∑𝑁
𝑖=1 I

[
arg max 𝑓𝑡 (𝑥𝑖) == arg max 𝑓𝑡

(
𝑥
𝑝 𝑗

𝑖

) ]
if 𝐴𝐶𝐶 𝑗 < 𝛾 then

p∗ ← 𝑝 𝑗 ⊲ Add candidate preprocessing algorithm
𝛾 ← 𝐴𝐶𝐶 𝑗

end if
end for
return p∗

set size means more inference details and higher inference
cost. For example, we can rapidly infer which preprocessing
operations (scaling, JPEG compression, or both) are performed
by the target model, or spend more time to infer the specific
scaling/compression algorithm details. Given the output of
Alg. 2, we can choose the optimal configurations to craft the
CAEs. Specifically, we mainly consider the following cases:

(1) The target model executes scaling or JPEG com-
pression or both (p∗ ≠ ∅). In this case, CAA uses the
optimal preprocessing operations in p∗ to craft CAEs.
(2) The target model does not execute scaling nor
JPEG compression (p∗ = ∅). In this case, we can
locally perform preprocessing on the CAEs and send the
preprocessed CAEs to target models. In this way, CAA
achieves the same effect as traditional adversarial attacks.
Another more effective way is to just run the first stage of
CAA and send the preprocessed RAEs to target models
directly. From Fig. 16, we can see that running only Stage
1 achieves an average ASR of over 92%, yielding stronger
attacker performance than running two stages.

VIII. CONCLUSION

In this paper, we introduce a novel camouflaged adversarial
attack, which hides the adversarial properties behind image
preprocessing to pass label checking and adversarial detection.
We design a two-stage optimization strategy, making CAEs
disguise as benign images, but implicitly turn into AEs after
preprocessing. Extensive experiments validate the effective-
ness. This work is the first attempt to exploit the feasibility
of using preprocessing as a trigger to craft camouflaged AEs.
We expect our work can draw attention to the potential threat
caused by integrating preprocessing into adversarial attacks.
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